Суперобъекты - Страница 37


К оглавлению

37

Однако пока наблюдать испарение черных дыр не получается. Вернемся к реалиям астрофизической жизни и вспомним, какие черные дыры мы знаем. Во-первых, есть черные дыры звездных масс. Живет большая массивная звезда. Она пережигает в своих недрах водород в гелий, гелий в углерод и кислород… Наконец доходит до элементов группы железа. Дальше горение идти не может, и ядро схлопывается. Если это схлопывание ничем не остановить, то образуется черная дыра. Типичная масса такого объекта раз в десять больше солнечной. Это достаточно массивная черная дыра, она испаряется очень медленно. Кроме того, вокруг постоянно летает какой-нибудь мусор, а вдобавок есть реликтовое излучение (чья температура, составляющая сейчас 2,7 градуса Кельвина, превышает температуру массивных черных дыр), и это все попадает в черную дыру. Поэтому ее масса все-таки в среднем растет, а испарение ничтожно мало.

Еще есть сверхмассивные черные дыры в центрах галактик. Существует два основных сценария их образования. То ли большие облака газа сразу схлопывались в дыры, а потом они росли. То ли первые звезды давали большие – по 100–200 масс Солнца – черные дыры, которые тоже потом росли, поглощая вещество. Для нас сейчас существенно, что эти дыры испаряются медленно, еще медленнее звездных, потому что температура черной дыры тем меньше, чем больше ее масса. Значит, увидеть их испарение тоже невозможно. Поэтому, вообще говоря, увидеть черную дыру тяжело.

Уверены ли астрофизики в существовании черных дыр? Есть простой практический ответ: Нобелевскую премию за открытие черных дыр пока никто не получил. Значит, нет окончательного подтверждения. В то же время, хотя и нет полной уверенности, почти все астрономы готовы биться об заклад, что они существуют. (Здесь важно уточнить, что мы говорим необязательно о черных дырах Общей теории относительности, а о более общем классе сколлапсировавших объектов, у которых нет поверхности и которым нельзя приписать какое-то обычное уравнение состояния.)

Мы не наблюдаем процессов, присущих исключительно черным дырам, потому что все время видим лишь что-то в их окрестности. Строго говоря, следовало бы говорить лишь о кандидатах в черные дыры, потому что пока можно изучать только поведение вещества вокруг них. Например, можно регистрировать излучение аккреционных дисков. Таким структурам посвящена самая известная, самая цитируемая статья, когда-либо написанная в нашей стране, – это работа Николая Шакуры и Рашида Сюняева, опубликованная в 1973 году. В ней построена модель течения вещества вокруг черных дыр. Это оказалось всем нужно, это крайне востребовано учеными, долгое время эта работа даже была самой цитируемой статьей в астрофизике во всем мире. Но, изучая только диски или движение звезд вокруг сверхмассивных черных дыр в центрах галактик, нельзя абсолютно надежно доказать, что это именно объекты с горизонтом, а не с поверхностью. Может быть, через несколько лет самым надежным источником информации о черных дырах станут гравитационные волны.


Гравитационные волны распространяются по пространству-времени, возмущая его.


Волны пространства-времени

Итак, мы описываем гравитацию с помощью геометрической теории. Обычно для иллюстрации ее свойств используют аналогию с эластичной поверхностью, о которой мы уже говорили. Пусть есть такая резиновая плоскость. Теперь представьте, что вы – бог и вы тыкаете пальцем в эту плоскость. Вы постукиваете по поверхности, и по ней бежит рябь. В некотором смысле это и есть гравитационные волны. Но палец в данном случае появляется откуда-то снаружи. Теперь вернемся в реальность. В реальности возмущение должно производить что-то на самой плоскости, какие-то реальные объекты. В принципе, если вы размахиваете руками – вы испускаете гравитационные волны, потому что руки имеют массу, так что они искажают пространство вокруг себя, вы ими двигаете, и по пространству бежит рябь. Но это очень слабый эффект. Сильный эффект достигается, если двигаются массивные и, что важно, достаточно компактные объекты, потому что нам нужно не просто тяжелое тело – нам нужно в данном месте очень сильно исказить пространство-время. И в данном случае черные дыры идеально подходят.

Однако черная дыра сама по себе достаточно симметрична, она ничего излучать не будет. Нам нужна какая-то асимметрия. К счастью, в природе происходят нужные нам несимметричные процессы. Например, было две массивные звезды. Обе поочередно взорвались как сверхновые и дали две черные дыры. И теперь они крутятся друг вокруг друга. Далее, представьте, у вас два уже шарика катаются по нашей эластичной плоскости, вращаясь вокруг общего центра масс. От них обязательно побежит рябь. Испускаются волны.

Вращаясь по своим орбитам, черные дыры испускают гравитационные волны. Они уносят энергию и момент импульса орбитального движения. Поэтому черные дыры постепенно сближаются. Гравитация так устроена, что если от системы двух тел отнять энергию, то скорость орбитального движения по мере сближения только растет. В случае черных дыр она постепенно доберется до скорости света. Значит, перед слиянием у каждой черной дыры имеется колоссальная кинетическая энергия.


Система из двух компактных объектов, которые сближаются за счет испускания гравитационных волн. Если хотя бы один из объектов является радиопульсаром, то мы можем очень точно измерить изменение параметров системы, что позволяет не только определить свойства обоих компонентов, но и проверять предсказания теорий гравитации.

37